A Dutch coreference resolution system with an evaluation on literary fiction

Andreas van Cranenburgh

University of Groningen, The Netherlands

November 7, 2019, Düsseldorf, CL colloquium talk

https://twitter.com/JenMsft/status/1132306345787568128

Plan for today

- 1. Background
- 2. Annotating Dutch novels
- 3. The coreference system
- 4. Evaluation
- 5. Future work

1. Background

- 2. Annotating Dutch novels
- 3. The coreference system
- 4. Evaluation
- 5. Future work

Definition

Coreference resolution is the task of clustering mentions in text that refer to the same underlying real world entities.

http://nlpprogress.com/english/coreference_resolution.html

Definition

Coreference resolution is the task of clustering mentions in text that refer to the same underlying real world entities.

+----+ | | "I voted for Obama because he was most aligned with my values", she said. | | |

http://nlpprogress.com/english/coreference_resolution.html

Definition

Coreference resolution is the task of clustering mentions in text that refer to the same underlying real world entities.

- Entity 1 = {Obama, he}
- Entity 2 = {I, my, she}

http://nlpprogress.com/english/coreference_resolution.html

Mentions

Definition

Mention or referring expression: span of text that refers to a person or object in the real or mention world.

NB: contrast with markable, a *potentially* referring expression.

Mentions

Definition

Mention or referring expression: span of text that refers to a person or object in the real or mention world.

NB: contrast with markable, a *potentially* referring expression.

Pronouns I, he, my, his, that, [each other], himself, ... Names [John], [John Smith], [Mr. Smith], ... Nominals [the man], [the flowers on [the table]], ... But not:

Events, actions, times

Coreference: mentions of the same entity

- ▶ [John]₁ sees [Mary]₂. [He]₁ waves at [her]₂.
- [Bond]₁, [James Bond]₁.
- [I]₁ took [[my]₁ bike]₂.

The [city councilmen]₁ refused [the demonstrators]₂ a permit because ...

- 1. ... [they] $_1$ feared violence.
- 2. ... [they] $_2$ advocated violence.

"Al-complete" problem

Kehler (2002). Coherence, reference, and the theory of grammar, chapter 1. http://web.stanford.edu/group/cslipublications/cslipublications/pdf/1575862166.pdf Various datasets, languages:

1996 MUC-6 shared task, English

2004 ACE shared task, English/Chinese/Arabic

2010 SemEval shared task, multilingual including Dutch

2011 CoNLL shared task, English

2012 CoNLL shared task, English/Chinese/Arabic

State of the art: from rules to a neural arms race ...

OntoNotes (English), CoNLL scores:

CoNLL 2011 shared task, winner: Lee et al., rule-based58.3%CoNLL 2012 shared task, winner: Fernandes et al., perceptron58.7%EMNLP 2017 end-to-end coref. resolution, deep learning67.2%NAACL 2018 e2e + ELMO + c2f, deeper learning73.0%EMNLP 2019 e2e + BERT Large, even deeper learning76.9%

Evaluation metrics

Coreference evaluation is a mess!

Fatally flawed metrics:

1996 MUC

1998 B³

2005 CEAFm, CEAFe 2011 CoNLL score (= avg of MUC, B³, CEAFe) 2011 BLANC

No known issues (yet!):

2016 Link-based Entity-Aware metric (LEA)

Moosavi & Strube (ACL 2016) Which coreference evaluation metric do you trust? A proposal for a link-based entity aware metric

1. Background

2. Annotating Dutch novels

- 3. The coreference system
- 4. Evaluation
- 5. Future work

#BenderRule:

The rest of this talk is about Dutch!

https://thegradient.pub/the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/

I made a new annotation scheme

Annotation scheme

Simplified annotation scheme:

- Annotate mentions: include singletons, exclude non-referring expressions.
- Avoid difficult mention boundaries: no discontinuity, relative clauses
- Only annotate entity clusters, not directed anaphor-antecedent relations

Annotation workflow

- 1. Tokenize, parse with Alpino
- 2. Run coreference system
- 3. Manually correct output with CorefAnnotator
- 4. Optional: correction by second annotator

http://www.let.rug.nl/vannoord/alp/Alpino/ https://github.com/nilsreiter/CorefAnnotator/

Annotation workflow

- 1. Tokenize, parse with Alpino
- 2. Run coreference system
- 3. Manually correct output with CorefAnnotator
- 4. Optional: correction by second annotator

Result: tabular CoNLL 2012 file

#begin d	docum	ent	(example	e);	part	000
example	1	Joł	าท	(0))	
example	2	see	es	-		
example	3	Mar	∽у	(1))	

#end document

http://www.let.rug.nl/vannoord/alp/Alpino/ https://github.com/nilsreiter/CorefAnnotator/

Annotated texts

	CLIN26 dev set	SemEval 2010 dev	Novels, dev set	Novels, test set
documents	30	23	10	11
tokens	4018	9164	19 <i>,</i> 051	88,092
sents per doc	7	21.4	100	491.5
avg sent len	19.3	18.4	19.0	16.3

Annotated texts

	CLIN26	SemEval	Novels,	Novels,
	dev set	2010 dev	dev set	test set
documents	30	23	10	11
tokens	4018	9164	19,051	88,092
sents per doc	7	21.4	100	491.5
avg sent len	19.3	18.4	19.0	16.3
entities	273	424	1798	8337
mentions	663	1010	4243	20,873
% pronouns	7.69	14.45	43.3	36.5
% nominal	52.34	54.35	46.2	52.2
% names	39.97	31.20	10.5	11.2

107k tokens of annotated literary text!

1. Background

- 2. Annotating Dutch novels
- 3. The coreference system
- 4. Evaluation
- 5. Future work

Mention detection

- 1. Extract candidate constituents
- 2. Adjust spans
- 3. Filter with patterns
- 4. Detect features

- [John], [who], [the book on [the table]], ...
- [Mr Smith], [San Jose, California], ...
- Drop: yesterday, about two meters, ...
- gender, animacy, number

Mention feature detection

parse features in the Alpino parse tree (HPSG-inspired) NER part of Alpino; person/org/loc/misc wordnet animacy & gender of head nouns (hand-corrected) web text names extracted w/heuristic patterns from 30GB English text

Bergsma & Lin (COLING-ACL 2006). Bootstrapping path-based pronoun resolution. http://aclweb.org/anthology/P06-1005

Mention feature detection

parse features in the Alpino parse tree (HPSG-inspired) NER part of Alpino; person/org/loc/misc wordnet animacy & gender of head nouns (hand-corrected) web text names extracted w/heuristic patterns from 30GB English text

	Pronouns	Nominals	Names
Number	parse	parse	web tekt
Gender	parse	wordnet	web text
Animacy	parse	wordnet	NER, web text

Bergsma & Lin (COLING-ACL 2006). Bootstrapping path-based pronoun resolution. http://aclweb.org/anthology/P06-1005 Quote attribution find speaker & addressee of direct speech String match [The boy]₁ ... [The boy]₁ ... Precise constructs [the boy]₁ [who]₁ ... Head match [The clever boy]₁ ... [the boy]₁ Proper head noun match [Bond]₂, [James Bond]₂ Pronoun resolution [He]₁ ... [his]₁ ...

Muzny et al. (EACL 2017) A two-stage sieve approach for quote attribution Heeyoung Lee et al. (CL 2013) Deterministic coreference resolution [...]

Demo

https://andreasvc.github.io/voskuil.html

1. Background

- 2. Annotating Dutch novels
- 3. The coreference system

4. Evaluation

5. Future work

Evaluation: shared tasks

CLIN26 shared task	Mentions	BLANC			
GroRef, Boeing test set	59.34	30.96			
Inis work, Boeing test set	59.49	31.48			
GroRef, GM test set	60.40	31.31			
This Work, GM test set	59.26	31.07			
GroRef, Stock test set	53.70	25.40			
This Work, Stock test set	54.68	26.09			
SemEval 2010, Dutch, test set	Mentions	BLANC	MUC	B ³	CEAFm
SemEval 2010: Sucre	42.3	46.9	29.7	11.7	15.9
SemEval 2010: UBIU	34.7	32.3	8.3	17.0	17.0
This Work	64.27	41.48	51.95	45.85	51.20

	mention			LEA
	F1	recall	precision	F1
SemEval 2010 (test set)	64.27	36.00	39.96	37.88
CLIN26 shared task (Boeing test set)	59.49	29.83	33.95	31.76
Literary texts (dev set)	87.05	57.13	61.71	59.33
Literary texts (test set)	87.10	49.27	57.45	53.05

Discussion

- High variance among novels; matter of style?
- Better performance on novels than news! Surprising?
 - More dialogue and pronouns in novels (some long chains)
 - Novels are longer documents (including our annotated fragments)
 - Not all errors are created equal ...

1. Background

- 2. Annotating Dutch novels
- 3. The coreference system
- 4. Evaluation
- 5. Future work

Improve components

Components:

- Mention detection/spans
- Pleonastic pronoun detection
- Gender/animacy
- Quote attribution
- Pronoun resolution

Heeyoung Lee et al. (NLE 2017) A scaffolding approach to coreference resolution integrating statistical and rule-based models. https://doi.org/10.1017/S1351324917000109

Improve components

Components:

- Mention detection/spans
- Pleonastic pronoun detection
- Gender/animacy
- Quote attribution
- Pronoun resolution

Procedure:

- 1. Acquire/annotate more data
- 2. Train supervised classifier
- <mark>3</mark>. ???
- 4. Profit!

Heeyoung Lee et al. (NLE 2017) A scaffolding approach to coreference resolution integrating statistical and rule-based models. https://doi.org/10.1017/S1351324917000109

Neural coreference

Train End-to-end coreference system with BERT for Dutch ...

Kenton Lee et al. (EMNLP 2017) End-to-end neural coreference resolution

THE END

Code: https://github.com/andreasvc/dutchcoref

Paper: Coming soonTM

Thanks to my BSc thesis students for helping with annotation!

Dilbert cartoon, syndicated by Bruno Publications B.V.