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Overview

In which we introduce the topics & contributions of this thesis: syntax and literature,
analyzed with computational models.

and philology; this thesis presents computational work in both areas.

Computational linguistics, and its applied variant Natural Language
Processing (NLP), takes language as its object of study and uses computers as an
instrument to develop and evaluate models. Evaluation of predictive models
provides an important methodological heuristic that sets computational linguis-
tics apart from other fields of linguistics and many branches of science. New
tasks or improved models for existing tasks are benchmarked with quantita-
tive metrics (this has been referred to as the common task framework, Liberman
2015b), giving an immediate indication of how much has been achieved and
what remains to be done. One such task which is considered in the first part of
this thesis is that of syntactic parsing, where the goal is to analyze the syntactic
phrases or relations between words in a sentences.

Philology means the love of words, learning, interpretation, and literature;
often from a historical perspective. The second part of this thesis deals with
a topic in what could be called computational philology, more specifically,
computational literary stylistics. The increasing availability of digitized texts
and effective computational methods to study them offer new opportunities.
These methods not only allow more data to be processed, they also suggest
different questions. Machine learning and the broader field of data science offer
the possibility of extracting knowledge from data in an automated, reproducible
manner.

T HERE IS A traditional contrast in the study of language between linguistics

RESEARCH QUESTIONS. Since this thesis covers two main topics, we state the
research question for each topic, and another connecting the two.

ParsiNG LANGUAGE: To what extent is it possible to create linguistically rich pars-
ing models without resorting to handwritten rules by exploiting statistics
from annotated data?

Probabilistic algorithms for parsing and disambiguation select the most probable
analysis for a given sentence in accordance with a certain probability distribu-
tion. A fundamental property of such algorithms is thus the definition of the



space of possible sentence structures that constitutes the domain of the probability
distribution. Modern statistical parsers are often automatically derived from
corpora of syntactically annotated sentences (“treebanks”). In this case, the
“linguistic backbone” of the probabilistic grammar naturally depends on the
convention for encoding syntactic structure that was used in annotating the
corpus.

Statistical parsers are effective but are typically limited to producing projec-
tive dependencies or constituents. On the other hand, linguistically rich parsers
recognize non-local relations, and analyze both form and function phenomena
but rely on extensive manual grammar engineering. We combine advantages of
the two by building a statistical parser that produces richer analyses.

MARKERS OF LITERARINESS: What sorts of syntactic and lexical patterns may cor-
relate with and explain the concept of literature?

In contrast to genre fiction, literary novels do not deal with specific themes and
topics. However, they may still share stylistic and other implicit characteristics
that may be uncovered using text analysis and machine learning.

These two research questions are connected by the following question:

SYNTAX IN LITERATURE: For what sorts of stylistic and stylometric tasks and un-
der which conditions can morphosyntactic information be exploited fruit-
fully?

Previous work has shown that simple textual features that are easy to extract,
in particular Bag-of-Words features, typically outperform structural features
such as syntax, which are comparatively expensive to extract. Our aim is to see
to what degree this holds in the case of (literary) fiction, and whether there are
specific aspects for which syntax is important.

OurtLINE. The common themes in the two parts of this thesis are (a) the use of
tree fragments as building blocks and predictive features, and (b) non-local and
functional relations.

Part I deals with parsing and is concerned with general language use as made
available in annotated data sets of several languages.

Part IT deals with literature and focuses on contemporary Dutch novels and
in particular on what differentiates literary language from the language of genre
fiction. This work is done in the context of the project “The Riddle of Literary
Quality,” which aims to investigate the concept of literature empirically by
searching for textual features of literary conventions in contemporary novels.

The two parts of this thesis can be read independently. One exception is that
the algorithm for extracting recurring tree fragments defined in part I is used in
part II, and should be referred to for specifics on that method.

ConrtriBuTIONS. The contributions of this thesis can be summarized as follows:



Efficient extraction of recurring patterns in parse trees, which can be used
to build grammars, as features in machine learning tasks, and in linguistic
research in general. The method that is presented provides a significant
improvement in efficiency and makes it possible to handle much larger
corpora.

A statistical parser automatically learned from treebanks, reproducing
rich linguistic information from the treebanks, such as discontinuous
constituency & function tags. The parsers are induced from data with
minimal manual intervention and evaluated on several languages.

An investigation of what makes texts literary, use ratings from a large
online survey, and machine learning models of texts to predict those
ratings.

These models, based on lexical, topical, and syntactic features, demon-
strate that the concept of literature is non-arbitrary, and predictable from
textual characteristics to a large extent.






Part 1
Parsing






1 Syntax & Parsing Background

In which we survey previous work on syntactic analysis by computer, with particular
attention to Data-Oriented Parsing (DOP).

La plus part des occasions des troubles du monde sont
Grammariens. Noz procez ne naissent que du debat de
I'interpretation des loix; et la plus part des guerres, de
cette impuissance de n‘avoir sgeu clairement exprimer
les conventions et traictez d’accord des Princes.
Most of the occasions for the troubles of the world are gram-
matical. Our lawsuits spring only from debate over the
interpretation of the laws, and most of our wars from the
inability to express clearly the conventions and treaties of
agreement of princes.

— de Montaigne (Essais, 11, 12; trans. D. Frame, 1958)

introduces the background for statistical parsing, including basic linguis-

tic notions. What is syntax, and why do we need it? It turns out that the
answer is not obvious, and ultimately boils down to the question why natural
languages are as complex as they are.

S INCE THIS thesis is intended for a multi-disciplinary readership, this chapter

The rest of this chapter reviews syntactic representations and parsing tech-
nology for automatically assigning syntactic analyses to sentences. We end with
an exposition of Data-Oriented Parsing, the parsing framework that will be
used in this thesis, followed by a reflection on the competence-performance
distinction.

SYNTAX

Grammar determines the set of well-formed sentences that are part of a language.
Grammar consists of syntax and morphology. The syntax of a language governs



which combinations of words form sentences® while morphology governs which
combinations of morphemes form words and how they function in the sentence.
A trivial example:?

(1) a. the book
b. *book the

Note that there is nothing natural about the fact that a determiner should
precede its noun. There are languages in which determiners follow nouns, as
well as languages without any determiners.

Another role of syntax is to assign structure to a sentence. Syntactic relations
answer questions such as who did what to whom, while structure may also reveal
the building blocks of the sentence. For example:3

(2) a. abook [ about walking [ in the woods | |
b. #a book [ about walking] [ in the woods ]

Here we also see an example of an attachment ambiguity, which is a major source
of syntactic ambiguity. The first bracketing expresses the normal interpretation
of book that tells you about the kind of walking in woods. The second interpre-
tation is of a book that is specified to be both about walking and in the woods
(i.e., it is the book which is in the woods). Although the latter interpretation is
highly improbable, note that there is no structural reason why this is so.

The division of labor between syntax and morphology depends on the def-
inition of what is a word. This is not an unproblematic notion, because there
is no definition that works across all languages. Two ways of defining words
are the prosodic definition (words are identified by stressed syllables) and the
grammatical definition (words are the units that can occur in isolation according
to morphology and syntax). For a given language with a clear definition of what
a word is, the division between morphology and syntax is clear.

On the other side syntax interfaces with semantics, viz. the meaning of words
and sentences. Although syntax is sometimes viewed as completely separate
from semantics and other linguistics divisions (“the autonomy of syntax”), there
is overlap in many cases, such as in the aforementioned who did what to whom, in
which semantic information is realized by syntactic means, and, conversely, in
syntactic ambiguities that can be resolved by semantics, such as the attachment
ambiguity above.

1 Word order is often invoked when defining syntax. However, this reliance is not an inherent feature
of syntax. In less- and non-configurational languages morphology plays a larger role.

2 This thesis follows the common convention of prefixing ungrammatical examples with an asterisk.

3 The # symbol indicates a sentence or interpretation that is not felicitous, although not ungrammati-
cal.



1.

WHY DO LANGUAGES HAVE SYNTAX?

It is instructive to wonder whether syntax is actually necessary for a language,
or at least, why it is as complex as it is. We will distinguish two aspects of
syntax (Koenig and Michelson, 2014). Compositional syntax specifies how the
meanings of expressions may be combined. Formal syntax determines which
combinations of words are accepted as part of the language. It is especially the
latter whose complexity seems incidental and non-essential.

Consider the language of simple arithmetic expressions. These are ordinarily
written in infix notation, with the operator between its operands:

242
(3+4)*5

The following are all ungrammatical:

22+
34+5+#

The latter examples use postfix notation,* in which operators come after their
operands. In postfix notation, every permutation of numerals and operators ar-
guably forms a syntactically valid expression.5 Additionally, any ordering of op-
erations can be achieved without parentheses. This does mean that tokens must
be delimited in some way, because there is no alternation “operand-operator” as
in infix notation. Clearly, in the case of arithmetic expressions, syntax (beyond
the lexical level) is optional. Infix notation introduces a context-free grammar
along with attachment ambiguities that need to be resolved with parentheses
and precedence order, but this complexity is not intrinsic to the task.°

What this example shows is that it is perfectly possible to define a language
in which every possible sequence of tokens is a valid expression. So what is the
trade-off that is being made in a language that rejects a large part of the space of
possible expressions? Or is it simply an aspect of what makes natural languages
natural?

We can speculate about various reasons:

ProcessinG: The encoding and decoding of a message with minimal syntax may
be more expensive. In postfix notation of arithmetic, interpretation relies
on keeping track of one or more stacks. The stack may be modified at each
step, and the effect of a given token depends on the current state of the
stack.

4 Postfix notation is also known as reverse Polish notation, in honor of logician Jan Lukasiewicz.

5 Caveat: there may not be enough operands on the stack, or operands may be left on the stack at
the end of the expression. For the sake of the argument this should be considered a semantic issue.
After all, the same expression could be used in another context where it does fit.

6 The similarities between infix notation and natural language do not end here. Experimental research
has shown that arithmetic attachment ambiguities influence natural language ambiguities, and vice
versa (Scheepers et al., 2011), suggesting that they rely on the same cognitive representations.
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ReriaBiLITY: There is an advantage to being able to recognize a malformed
message, e.g., when communicating through an unreliable channel and
a sentence comes through only partially, this may be detected by its un-
grammaticality.

LANGUAGE CHANGE: Since natural languages are generally not planned but
change for a variety of reasons, it may not be possible to maintain a
language where every combination of tokens is interpreted consistently;
i.e., given that other aspects of language are subject to change, there is no
reason why syntax would stay perfectly fixed.

INHERENT comMPLEXITY: What natural languages are used for is inherently more
complex than arithmetic expressions or computer instructions. Specif-
ically, it could be that language users have hierarchical internal repre-
sentations (Kirby, 2002), and it would therefore be natural that language
evolves to express them.

Instead of looking for a priori reasons for syntax, we can also consider em-
pirical evidence from linguistic typology, which maps the common and distin-
guishing features of the world’s languages.

There exist languages that are much simpler than most. The so-called pidgin
languages emerge when different groups of people come into contact that do
not share a language. The language combines vocabulary of the languages of
each of the group, but is syntactically simple.

Pidgin languages may creolize, which means that the language evolves into
a creole as the next generation learns the pidgin as a first language. This tends
to make the language more complex, including syntactically.

Another example is the case of Pirahd, a language spoken by a tribe of the
same name from the Amazonian jungle (Everett, 2005, 2009). The language
is claimed not to employ recursion—although this is a contentious claim (e.g.,
Nevins et al., 2009), which is difficult to resolve since the only outsiders who
have learned the language are Everett and two other missionaries. The language
makes it impossible to refer to something not directly witnessed, or indirectly to
the first degree (you know the person who witnessed it).7 Furthermore, Piraha
counting is restricted to 1, 2, and many, noun phrases may only contain one or
two words, there are no words for colors, nor future or past tenses. In fact, both
the language and its syntax, as well as their culture, appear to be simpler than
most extant languages or cultures,® and Everett (2005) concludes that these are
connected.

Jackendoff and Wittenberg (2014) argue for a new hierarchy to describe gram-
matical complexity. Unlike the Chomsky hierarchy which is strictly concerned
with the formal power of types of rewrite rules, their hierarchy is designed to

7 This fact played a role in his failure to convert the tribe to Christianity; he gave up his ambitions
as a missionary and proceeded with an anthropological and linguistic study. He also abandoned
Chomskyan linguistics.

8 The language does make elaborate use of suffixing and compounding, but this does not affect the
argument that its syntax is exceptionally simple.
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accommodate empirical evidence on languages of differing grammatical com-
plexity. The hierarchy is as follows:

1. (a) One-word grammar

(b) Two-word grammar

(c) Linear grammar: sentences consist of an arbitrary number of words
Simple phrase grammar: words may be grouped into phrases
Recursive phrase grammar: possibility of recursive phrases is introduced.
Morphology: structure in words, independent of syntax.
Fully complex grammars may include: syntactic categories, grammatical
functions, long-distance dependencies, etc.

g e

Almost all languages are at least in the recursive category. Languages with
a linear grammar or a simple phrase grammar may still fulfill all the semantic
and pragmatic needs of language users; they achieve this by relying more
on pragmatics and contextual factors. Jackendoff and Wittenberg (2014) cite
Piraha, described above, and Riau Indonesian, as languages with a simple phrase
grammar. On the other hand, more complex grammars entail the possibility for
more precise sentences (generally less ambiguous).?

In conclusion, it seems that there is no clear and precise a priori reason
why languages need to rely on syntax and accept only particular sentences.
Other kinds of languages are possible. However, looking at different languages
of the world suggests that cognitive and cultural factors are most important
in explaining the role of syntax. There is a trade-off where complex syntax
increases precision and reduces the difficulty of interpretation and reliance on
contextual information.

REPRESENTATIONS OF SYNTAX

Two major representations of syntax are constituency and dependency structures.
Both representations are hierarchical. This is evident for constituency structures,
which are often rendered as tree structures; dependency structures can be
rendered similarly, except that nodes consist solely of terminals.

Constituency structures, also known as phrase-structure trees, are built
around the notion of a constituent: a grouping of words or constituents that
functions as a unit (constituents with two or more words are called phrases).
Constituents may be labeled by a syntactic category. Edges between constituents
may be labeled by a (grammatical) function tag, although this is typically not
done for historical reasons.’® Figure 1.1 shows an example of a constituency
tree.

9 An important distinction here is that a complex grammar enables more precisely specified sentences
that are less ambiguous to the hearer; however, the complexity of the grammar would make the
language harder to parse for a computer. The simpler grammar is underspecified.

10 Within generative linguistics work on English, functional relations were assumed to be derivable

from phrase structure. This works well for English, since it is a highly configurational language in
which for example the subject typically precedes the verb.
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Sentence
f—lﬁ
NP VP
f—lﬁ f—lﬁ
the man Verb NP
‘ f—lﬁ
took the book

Figure 1.1: The first context-free grammar parse tree (Chomsky, 1956).

ROOT

DOBJ
DET NSUBJ DET

the man took the book
DET NOUN VERB DET NOUN

Figure 1.2: A dependency structure for the same sentence as in Figure 1.1.

When words can be said to form a unit is not always self-evident. There
exist a range a constituency tests that can be applied as heuristics. We briefly
discuss the most commonly used tests (Santorini and Kroch, 2007, ch. 2). The
substitution test is the most basic. If a group of words in a given context can be
exchanged for a “pro-form,” then this provides evidence for constituent-hood.
A pro-form is a function word that stands in for a word or phrase (e.g., he for a
person, it for a noun, how for an adverb, so for an adjective). The movement test
moves a given phrase to another position in the sentence, to see if the sentence
is still grammatical. This may require the right intonation, for example when
a direct object is topicalized and moved to the sentence-initial position. The
question test attempts to use the phrase as the answer to a question, which needs
to be a constituent.

Dependency structures consist of word-to-word relations (with specific con-
straints). To adequately represent a sentence, these relations should be directed
and labeled. Each relation is from a head word to one of its dependents (an
argument or modifier). They do not directly encode higher-level units such as
constituents,'' nor do they carry syntactic category labels. The labels express
functional relations. This means that dependency structures are simpler and
more minimal than constituency structures; the same sentence may contain half
as much nodes in a dependency analysis as in a constituency analysis. Figure 1.2
shows an example of a dependency structure.

Some phrases can be derived by starting from the head word and recursively following its depen-
dents. On the other hand, dependency structures deliberately avoid encoding finite verb phrases,
so these cannot be inferred without additional heuristic rules. This is an instance of an exocentric
constituent, where two or more elements are combined without a clearly identifiable head.
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It is generally not possible to mechanically convert a constituency structure
into a dependency structure, or vice versa. This is because the constituency
structure will typically not encode the head word of each constituent, nor its
functional relations, while the dependency structure does not encode phrases
and their categories. Going from dependency to constituency is harder. For
particular languages and particular annotation schemes, it may be possible
to design a conversion procedure, although this will typically need to rely on
heuristics (e.g., Daum et al., 2004; Choi and Palmer, 2010).

However, if we consider dependency and constituency structures purely as
data structures, the labels can be used to encode anything we want, including
additional structural information. This strategy has been used to encode depen-
dency structures in constituency trees (Eisner, 1996), and vice versa (Hall and
Nivre, 2008; Fernandez-Gonzélez and Martins, 2015), in a way that is reversible
without information loss. Structures may be transformed for processing, and
back-transformed to the final output used in evaluation. In other words, the
linguistic and theoretical considerations about the right representations are
completely separate from the practical, technical aspects of which is the most
expedient structure to use.

The labels in syntactic analyses represent discrete distributionally-defined
categories based on intuitions of linguists.'* For purposes of evaluation, these
categories are taken as-is. However, it is unlikely that a given set of categories
is ideal, since it must lie on an arbitrary point in the spectrum of granularity.
Furthermore, certain choices are bound to be arbitrary due to different possible
perspectives. For example, consider verbs that are used as adjectives: the
walking man. ‘Walking’ is a verb in the form of a gerund, but it is modifying a
noun so it behaves like an adjective. Clearly, it has properties of both. Finally,
it can be argued that the categoricity itself is artificial and that the categories
may be replaced altogether by a continuous vector representation. For practical
purposes, the original syntactic categories will be used as gold standard in this
thesis.

Until now we considered the basic syntactic structure of sentences, which
is typically the focus in statistical parsing. Syntactic representations can also
encode more elaborate structure such as morphology, long-distance dependen-
cies, as well as preserving both form and function (syntactic categories and
functional relations). In fact it is possible to encode all of this information and
synthesize the information in dependency and constituency structures (Skut
et al., 1997). This is the kind of representation we will work with in Chapter 3.

More fine-grained representations are common in linguistically-oriented
work. Examples are attribute-value matrices and feature structures, which may
encode more detailed information, from morphological features to semantic de-

Note that ultimately most evidence and data in (computational) linguistics rests on intuitions of
language users. Worse, most annotations are based not on field work and sufficient samples of
speakers, but on the introspective judgments of linguists themselves, with manifest limits in terms
of inter-annotator agreement.
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pendencies. These representations are more closely tied to particular linguistic
theories.

PARSING TECHNOLOGY

Parsing consists of assigning the correct syntactic analysis to a given sentence,
chosen from among a set of candidates licensed by the grammar. Two main
challenges are to ensure that the correct analysis is among the possible candi-
dates (coverage), and that the correct analysis picked out from among these
candidates (accuracy, which requires resolving ambiguity).

It is perhaps surprising that the number of candidates is huge, even when no
ambiguity is apparent. Computational linguistics has been instrumental to this
realization. Church (1988, p. 138) gives an example of the trivial sentence “I see
a bird” and shows that the part of speech of each word is ambiguous according
to the dictionary (e.g., I may be a numeral, see occurs as noun in “the holy see”,
etc). Most combinations of part-of-speech tags are grammatical, so syntax cannot
rule the ambiguities out either. The way to cope with such ambiguity is to take
probabilities into account; the alternate part-of-speech tags for these words are
vanishingly rare.

We can distinguish several axes on which parsing technologies vary:

MANUAL VERSUS AUTOMATIC: manual grammars are handwritten by linguists;
other grammars are automatically induced from corpora. However, there
are several other degrees of manual intervention in between. Tree transfor-
mations and syntactic refinements can help bring out linguistic generaliza-
tions. Statistical and machine learning methods have tunable parameters,
which can have a large effect on the final outcome.

STATISTICAL/PROBABILISTIC VERSUS KNOWLEDGE-INTENSIVE: statistics from lan-
guage use can be used to make parsing decisions. Grammars that do not
use statistics are sometimes referred to as rule-based or symbolic—but
this terminology is not helpful, since statistical parsers use rules and
symbols as well; a better terminology might be data-intensive versus
knowledge-intensive models.

LINGUISTICALLY RICH VERSUS BASIC ANALYSES: A basic analysis consists of phrase-
structures or dependencies. A linguistically rich analysis contains more
detailed information and aims for a consistent cross-linguistic account of
linguistic phenomena. Basic analyses enable effective statistical learning
methods; generalizing from richer analyses gets increasingly difficult due
to the complexity and sparsity of the data. Despite this, it should be
stressed that it is a pragmatic consideration.

COMPUTATIONAL EFFICIENCY: On one end there are dependency and shift-reduce
parsers, which have become exceedingly fast in recent years (measured
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in hundreds of sentences per second). On the other end there are parsing
formalisms that are computationally intractable, which can only be used
with heuristics and approximations.

Historically, parsers have been based on handwritten grammars. This tradi-
tion continues to this day under the names grammar engineering, high-precision
grammars, and broad- or wide-coverage parsing; e.g., Grammatical Frame-
work (Ranta, 2011), Head-Driven Phrase-Structure Grammar (upsG; Bender
et al., 2002; Bouma et al., 2001), and Lexical-Functional Grammar (LrG; Kaplan
and Bresnan, 1982). This work is characterized by detailed linguistic analyses,
often represented in attribute-value matrices. Analyses include grammatical
functions, long-distance relations, morphology, and co-indexation. However,
writing a grammar by hand is time consuming, and it is a task that is difficult
to manage: correcting an error may introduce more errors, all grammatical
sentences must be accepted (coverage), and only correct analyses should be pro-
duced (precision). Another common problem is that rich grammar formalisms
are often computationally intractable (Trautwein, 1995).

The availability of large amounts of data and computing power makes it
possible to exploit statistics of actual language use. Such data can be used
for estimating the probabilities of handwritten rules, or disambiguating the
analyses licensed by them. However, the logical next step is derive the grammar
from data as well. This has led to a line of work known as statistical parsing.

Most work in statistical constituency parsing is based on Probabilistic
Context-Free Grammars (pcrG) and extensions thereof.’3> A context-free gram-
mar (crG) consists of productions that rewrite a constituent into its direct
descendants; the latter may either be further constituents, or terminals (words):

NP — DET NOUN NOUN — book

The above productions state that one valid noun phrase consist of a determiner
followed by a noun, and that ‘book’ may be used as a noun. A set of productions
can be induced automatically from syntactic trees. When relative frequencies
of productions are included as well, a probabilistic model obtains, a pcrG. This
provides a simple, efficient and reasonably accurate model, given simple re-
finements to overcome the strong independence assumptions made by the pcrc
model. These assumptions can be broken down as follows (taken from Manning
and Schiitze, 1999, ch. 11):

Prace INVARIANCE: The probability of a subtree does not depend on where in
the string the words it dominates are [...]

Context-FREE: The probability of a subtree does not depend on words not
dominated by the subtree. [...]

ANcEesTOR-FREE: The probability of a subtree does not depend on nodes in the
derivation outside the subtree. [...]

13 Another important line of work is dependency parsing (e.g., Nivre et al., 2007); however, this thesis
is focused on constituency analyses.
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Examples of refinements to weaken these assumptions are including parent
categories in the labels and introducing linguistic distinctions not present in the
original annotation (Klein and Manning, 2003). Higher accuracy can be obtained
with further, automatic refinements, as well as different estimation methods that
go beyond the generative model. Examples are coarse-to-fine parsing (Charniak
and Johnson, 2005), discriminative re-ranking (Collins and Koo, 2005), latent
variable models (Matsuzaki et al. 2005; later picked up by Petrov et al. 2006, etc.),
and neural parsers (Henderson, 2004; Socher et al., 2013). These models have
established a steep curve of increasing accuracy and efficiency over the years,
but there is a single-minded focus on attaining the highest score, without much
attention to whether the analyses adequately describe the linguistic phenomena,
or whether the parser could serve as a plausible cognitive model.

An alternative is to strike a balance between linguistic adequacy and effi-
ciency, and find a grammar formalism that is just powerful enough to describe
the syntax of natural language. Joshi (1985) proposes Mildly Context-Sensitive
grammars, which are beyond context-free, but avoid the computational com-
plexity that comes with the full class of context-sensitive grammars. The first
formalism developed in this framework was Tree-Adjoining Grammar (TAG;
Joshi, 1985). There has been work on automatic extraction of tree-adjoining
grammars from corpora (Chiang, 2000; Xia et al., 2001; Kaeshammer and Dem-
berg, 2012), and formal extensions such as multi-component tac (Weir, 1988;
Schuler et al., 2000; Kallmeyer, 2009). Another successful formalism in this
line of research is Combinatory Categorial Grammar (ccg; Steedman, 2000), a
lexicalized grammar formalism based on combinatory logic.

The (somewhat informal) notion of mild context-sensitivity was introduced
by Joshi (1985) to capture precisely the amount of generative capacity needed to
describe natural languages—as opposed to employing richer frameworks which
require ad-hoc constraints to be tractable. Mildly context-sensitive languages
are characterized by the following properties:

1. limited crossed dependencies
2. constant growth
3. polynomial time parsing

For a formal description of these properties, refer to e.g., Groenink (1997). A
diverse set of formalisms with these properties has since developed. However,
while their structures and operations differ wildly, it has been observed that
they share two common properties (Vijay-Shanker et al., 1987; Weir, 1988):

LiNear: only a bounded amount of structure can be added or removed by
applying productions, i.e., operations are size preserving

ConNTEXT-FREE: choices during a derivation are independent of the context in
the derivation (where context is anything which is not being rewritten)

Furthermore, it does not matter whether the formalism rewrites strings,
tuples, or trees. This led to the introduction of Linear Context-Free Rewriting
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Systems (LcErs), which subsumes all formalisms with these properties. Groenink
(1997) states that “[t]he class of mildly context-sensitive languages seems to be
most adequately approached by Lcrrs.”

This thesis will use LcFrs to model discontinuous constituents.

DaTA-ORIENTED PARSING (DOP)

Data-Oriented Parsing (pop; Scha, 1990; Bod, 1992) departs from the assump-
tion that language users process sentences based on fragments from previous
language experience. This experience can help in two ways:

A MEMORY Bias: “[T]he number of constructions that is used to re-construct the
sentence in order to recognize it must be as small as possible.” (Scha, 1990).

A PrOBABILISTIC BIAS: “More frequent constructions are to be preferred above
less frequent ones.” (Scha, 1990).

In Data-Oriented Parsing the grammar is implicit in the treebank itself, and
in principle all possible fragments from its trees can be used to derive new
sentences. Grammar induction is therefore conceptually simple (even though
the grammar may be very large), as there is no training or learning involved.
This maximizes re-use of previous experience.

The use of all possible fragments allows for multiple derivations of the same
tree; this spurious ambiguity is seen as a virtue in pop, because it combines the
specificity of larger fragments and the smoothing of smaller fragments. For
example, consider two large fragments from sentence A and B that provide
evidence for a given analysis of a sentence, but they cannot form a derivation
together because they overlap or a piece is missing. By using them in two
separate derivations, they both contribute towards preferring this analysis.

This is in contrast to parsimonious approaches which decompose each tree in
the training corpus into a sequence of fragments representing a single derivation,
such as in Bayesian Tree-Substitution Grammars (1sG; Post and Gildea, 2009;
Cohn et al., 2010). In Bayesian approaches for tsG induction the treebank is
used to induce a corpus of derivations. This leads to a gain in efficiency and is
based on sound statistical theory, but the performance of Bayesian 1sc models
has been lower than heuristically trained por models. This may be simply due to
the fact that the former models are parsimonious, which leads to smaller models
with less fragments.

The definition of a por model can be broken down into four parts (Bod,
1995a):

FraGgMENTs: what are the units on which the model operates?

OrEeraTIONS: what operations can be performed to combine or alter fragments?

EstimaTiOoN: how will the probability of performing operations on particular
fragments be determined?

DisaMBIGUATION: how will the most appropriate parse tree be selected among
candidates?
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DOP OPERATIONALIZED WITH TREE-SUBSTITUTION GRAMMAR

The first instantiation of por is por1 (Bod, 1992), which is a Probabilistic Tree-
Substitution Grammar (prsG).'* A tree-substitution grammar can be seen as a
context-free grammar which rewrites trees instead of strings. It is defined by a
set of elementary trees and a substitution operation which combines these trees
until they form a derivation of a complete sentence.

A derivation is defined as a sequence of elementary trees combined through
left-most substitution. Left-most substitution is defined for any two trees ¢; and
ta, such that ¢; has a frontier node labeled X and root(¢3) = X; the result of
t1 0ty is a new tree where t5 is substituted for the first frontier node labeled X in
t1. The probability of a derivation is the product of the weights of its elementary
trees.

In general, a tree-substitution grammar is not equivalent to a context-free
grammar. However, in the case of por1, the set of elementary trees is such that
their generative powers are in fact identical. Specifically, all fragments are built
up out of cra rules, and all crG rules are themselves fragments of depth 1, so
the generative power must coincide.

Although the generative power of the underlying grammar is identical to a
context-free grammar, probabilities are estimated not just on the basis of the
frequencies of crc rules, but by considering all connected fragments of the trees
in the training'> data. More specifically, a fragment of a tree is a tree of depth
> 1, such that every node has a corresponding node in the original tree, and has
either no children, or the same children as in the original tree. When a node in a
fragment has zero children, it is called a frontier node. Frontier nodes are the
substitution sites of fragments, and correspond to open slots in constructions.
Figure 1.3 shows the bag of fragments extracted from a sentence; Figure 1.4
shows a pop1 derivation with these fragments.

Since these fragments can cover an arbitrary number of terminals & non-
terminals, the independence assumptions made in parsing are much weaker,
and much more information from the training data is exploited during parsing.
It is tempting to conclude that por models all possible statistical dependen-
cies, because por uses all fragments. This is not true, however, for several
reasons. For one, there could be more general definitions of what constitutes a
fragment; e.g., relaxing the assumption that a ‘fragment’ must be a connected
subset. Furthermore, certain statistical regularities cannot be captured using
frequencies of fragments, such as Markov processes or phenomena that violate
the place-invariance assumption. Lastly, and most importantly, while por1 is
strong on modeling structural relations, it is not sensitive to lexical dependen-
cies (Sima’an, 2000). The por1 model does weaken both the context-free and

14 Sometimes the name Stochastic Tree-Substitution Grammar (stsG) is used, but ‘probabilistic” avoids
confusion with synchronous grammars.

15 Technically, a por model is not trained, because its probabilities are directly derived from data. We
will, however, maintain the terminology of training and testing to distinguish the part of the data
which the parser has at its disposal and the strictly separated part which the model is evaluated on.
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Figure 1.3: The fragments as extracted from “Daisy loved Gatsby.”
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NP VP NP VP
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VB NP Daisy Gatsby VB NP
lO\}es Daisy lov‘es Gat‘sby

Figure 1.4: A por1 derivation. Note that “Daisy” becomes the subject, because
fragments are combined with left-most substitution.

the ancestor-free assumptions made by pcrc models, through its probabilities of
larger fragments. Additionally, there can be multiple sequences of fragments
which cover the sentence, because there will be overlap. This so-called spurious
ambiguity should be exploited because it allows a more fine-grained comparison
of possible analyses for a sentence.

This suggests two fundamental methods of disambiguation based on fre-
quencies: the most probable derivation (mpD), and the most probable parse (mpp).
The former maximizes the probability of an individual derivation (one sequence
of fragments leading to a complete analysis). The latter maximizes the sum of
derivations leading to the same analysis, i.e., we choose ¢ to maximize

Pit)y= []r(f)

deD(t) fed

where D(t) is the set of possible derivations of ¢. Bod (1995b) cites a score of
65% when using the mpp, and 96% with the mpp. Unfortunately, this step of
calculating not just the mpD but the mpp is often neglected in por-inspired tree-
substitution grammars (O’Donnell et al., 2009; Cohn et al., 2009; Post and Gildea,
2009), in pursuit of a more economical or efficient model. However, there are
arguments for keeping track of all possible frequencies, namely the importance
of frequency in grammaticalization and the formation of idioms (Bybee, 2007).
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Since it appears that arbitrary units can partake in this process, all fragments
& frequencies must be available. This leaves the door open to topics such
as language change & acquisition, instead of modeling a parsimonious but
synchronic snapshot provided by the sample that is the training corpus.

It has been shown that the problem of finding the most probable parse
is Np-hard (Sima’an, 2002). Consider that there is an exponential number of
fragments for each tree, hence a potentially exponential number of derivations,
and it follows that the exact best parse cannot be identified in polynomial time,
in the general case. However, this is not a problem in practice, as there are
methods to approximate the best parse effectively, using any number of random
or best derivations.

There is also a non-probabilistic method of disambiguation, the shortest
derivation (Bod, 2000). The objective is to minimize the length of the derivation.
In order to break ties of multiple shortest derivations, some additional criterion
is necessary. An example of this is the most probable shortest derivation (Mpsp),
which breaks ties by looking at derivation probabilities.

EsTIMATORS

In por1 the probability of a fragment f from the set of all fragments F being
substituted for a frontier node with label root(f) in a derivation is given by its
relative frequency:

fre

Zf/equije?l(f/) where 7' = { f’ € F | root(f’) = root(f) }

Johnson (2002a) has shown that this estimator is biased and inconsistent. The bias
of an estimator is the difference between the estimator’s expected value'® and
the true value of the parameter being estimated. For a pop estimator, a sample
consists of a sequence of parse trees (a training corpus) sampled from the true
distribution; the parameter being estimated is a distribution over parse trees.
A pop estimator is biased iff there is a distribution such that the estimator’s
expected probability distribution given all training corpora of a certain size
has a non-zero difference with the true distribution. Bias can be a good thing;:
it allows the estimator to make systematic generalizations not licensed by the
data, e.g., a preference for re-use. It has been shown that an unbiased por
estimator is useless: it must assign a weight of zero to any parse tree not part
of the training corpus (Prescher et al., 2003). Still, the kind of bias is crucial.
An issue with por1 is that it has a bias for larger trees Bonnema et al. (1999).
There are many more large trees than small trees; analogously, a large tree has
many more fragments than a small tree. This is reflected in por1’s probabilities
since these directly reflect frequencies. However, it is rather easy to remedy this
particular deficiency by scaling the probabilities appropriately, as suggested

16 The expected value of an estimator is the average estimate given all possible samples.
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by Bonnema et al. (1999) and Goodman (2003). Goodman’s strategy, the equal
weights estimate (Ewe), is employed by Bod (2003) and yields good results.

A more serious challenge is inconsistency. An estimator is consistent iff
the predictions of the estimator get arbitrarily close to the real distribution
as the amount of training data grows to infinity. Note that this property only
guarantees convergence in the limit; an estimator can be consistent without
performing well on real-world corpora, and vice versa. A reason for por1’s
inconsistency is the fact that, by design, it reserves probability mass for all
fragments, even those for which productivity has not been attested. For example,
in the Wall Street Journal, the contraction ‘won’t’ is annotated as two words,
but ‘wo’ does not combine with any other word, so the true distribution simply
assigns a probability of zero for any fragment containing ‘wo’ but not ‘n’t’, while
por1 will always reserve probability mass for such combinations which may
never materialize (Zuidema, 2007).

Observe why bias and consistency are orthogonal: bias is a property of all
the estimates taken together (does the mean of the estimates equal the true
distribution?), whereas consistency is a property of a sequence of estimators
(will it progress towards and reach the true distribution?). If we take as an
example throwing darts at a dartboard while aiming for the bulls-eye, then
hitting a circular pattern around the bulls-eye is unbiased, no matter the error,
while consistency refers to approaching the bulls-eye after practice.

Zuidema (2006) argues convincingly that bias and consistency are simply not
useful criteria for judging prsc estimators: the problem of estimating fragment
weights from corpora is underdetermined. We can also consider the frequencies
of trees produced by a prsG compared to the expected frequencies of trees in
the true distribution. In this case it is possible to achieve consistency, as por*
does, but only with an estimator that, in the limit, assigns all its weight to full
parse trees. Different criteria such as speed of convergence (Zollmann, 2004) or
robustness in the face of noise might yield more immediate benefits.

Despite these theoretical issues, the best results in popr on the Penn tree-
bank have been attained with inconsistent estimators based on relative frequen-
cies (Bod, 2003; Sangati and Zuidema, 2011).

THE IMPORTANCE OF FRAGMENT SELECTION

Until now we have considered the statistical properties of estimators and
whether they assign the right probabilities. A more fundamental question
is which productions the grammar should be composed of. In the case of pop,
this amounts to which fragments to assign a non-zero weight. The minimal
model which corresponds to a treebank pcrc includes all productions of the
training set which guarantees that those trees can be generated. Between this
minimalist model and the maximalist all-fragments model, there is a whole
spectrum of possible choices of fragments. It is important to note that while the
fragments are extracted from the treebank, they are not observed as such, since
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there is no evidence of fragment boundaries; another way of stating this is that
the treebank provides a corpus of complete parse trees, but not of derivations
with derivation steps. This choice of fragments can be considered from a statisti-
cal point of view, but this is not necessary. It is also possible to turn to heuristics,
as we will see in the next chapter.

In my experience getting the right productions is the more decisive aspect in
practice: without the right productions or fragments, no amount of statistical
sophistication will produce the right analyses. In terms of the por biases,
this means that the memory bias trumps the probabilistic bias. If a given
sentence fragment has been memorized, there is no need to determine its internal
structure using probabilistic reckoning. Concretely, this means that, all else
being equal, a larger fragment grammar will typically perform better, even with
simplistic relative-frequency weights.

Relatedly, all manner of preprocessing steps are more crucial and contribute
more to the final performance of the model than its statistical modeling or
clever optimization techniques. A case in point is the Collins parser, a parser
that exploits bilexical dependencies and incorporates an impressive amount of
linguistic knowledge (Collins, 1999). However, the efforts of Bikel (2004) at
reimplementing the Collins parser show

that bilexical dependencies are barely used by the model and that
head choice is not nearly as important to overall parsing performance
as once thought.

Various details that were previously unpublished accounted for an 11 %
relative error reduction, while a host of published preprocessing steps amount
to an even more dramatic improvement over the treebank pcrc baseline.

REVISITING COMPETENCE AND PERFORMANCE

The notions of competence and performance (Chomsky, 1965) have been influen-
tial in linguistics, including computational linguistics.'” Linguistic competence
comprises a language user’s “knowledge of language,” usually described as a
system of rules, while linguistic performance includes the details of the user’s
production and comprehension behavior. For a computational model, its syn-
tactic competence defines the set of possible sentences that it can process in
principle, and the structures it may assign to them, while its performance
includes such aspects as disambiguation using occurrence frequencies of gram-
matical constructions. Thus, the choice of a formalism to describe the system’s

17 The notions of competence and performance go further back. De Saussure introduced the related but

not equivalent concepts langue and parole. Both have been influenced by Wilhelm von Humboldt’s
notions of energeia (activity) and ergon (the product of such activity), which are again not equivalent
to the previous distinctions. However, the details shall not concern us since in this section we are
specifically concerned with the influence of the notion of competence on computational linguistics.
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competence grammar depends on one’s decisions on how syntax should be
formalized.

Regular and context-free grammars have been argued to be too lim-
ited (Chomsky, 1956; Shieber, 1985), while richer alternatives—context-sensitive
and beyond—are considered too powerful to allow for an efficient computa-
tional implementation; this applies to Transformational Grammar (Peters and
Ritchie, 1973), Lexical-Functional Grammar, and Head-Driven Phrase Structure
Grammar (Trautwein, 1995). A third option is to seek a careful comprise, such
as Mildly Context-Sensitive grammar (Joshi, 1985), which are beyond context-
free, but avoid the computational complexity that comes with the full class
of context-sensitive grammars. This has been relatively successful, although
there always seem to be recalcitrant phenomena that fall outside the generative
capacity of a particular formalism, rendering it unlikely that the search for the
‘true’ formalism will converge on describing all of natural language.

Irrespective of whether one accepts the competence-performance dichotomy,
a practical natural language system needs to deal with phenomena that depend
on world knowledge reflected in language use (e.g., the fact that in “eat pizza with
a fork”, with a fork is prototypically related to eat rather than to pizza). This has
led to a statistical turn in computational linguistics, in which models are directly
induced from treebanks (Scha, 1990; Charniak, 1996; Bod et al., 2003; Geman
and Johnson, 2004). If the end goal is to make an adequate model of language
performance, there is actually no need to have a competence grammar which is
‘just right.” Instead, we might reduce some of the formal complexity by encoding
it in statistical patterns. Concretely, we can opt for a grammar formalism that
deliberately overgenerates, and count on grammatical analyses having a higher
probability of being selected during disambiguation. This operationalizes the
idea of there being a spectrum between ungrammaticality, markedness, and
felicity. In a later chapter (Section 3.3.1) we introduce an approximation of
LcErs that makes it possible to produce discontinuous constituents in cubic time
using a context-free grammar, by encoding information in non-terminal labels.
A probabilistic variant of the resulting grammar makes stronger independence
assumptions than the equivalent LcErs, but as a component in a larger statistical
system this does not have to pose a problem.

In the debate about the context-freeness of language, cross-serial depen-
dencies have played an important role (Huybregts, 1976; Bresnan et al., 1982;
Shieber, 1985). Consider the following example in Dutch:

(3) Jan zag dat Karel hem haar laat leren zwemmen.
Jan saw that Karel him her lets teach swim.
‘Jan saw that Karel lets him teach her to swim.’

Ojeda (1988) gives an account using discontinuous constituents; cf. Figure 1.5. In
Section 3.3.1 we show how such analyses may be produced by an overgenerating
context-free grammar.

This is an instance of the more general idea of approximating rich formal



24

SMAIN
1
cP
SSUB
INF
INF
= gﬁ
N WW VG N VNWVNW WW Ww ww

| | | | | | | | |
Jan zag dat Karel hem haar laat leren zwemmen
Jan saw that Karel him her lets teach swim

Figure 1.5: Cross-serial dependencies in Dutch expressed with discontinuous
constituents.

models in formally weaker but statistically richer models, i.e., descriptive as-
pects of language that can be handled as a performance rather than a competence
problem. Another instance of this is constituted by the various restricted ver-
sions of TaGg, whose string languages form a proper subset of those of LcErs.
Restricted variants of TaG that generate context-free string languages are Tree-
Insertion Grammar (Schabes and Waters, 1995; Hoogweg, 2003; Yamangil and
Shieber, 2012), and off-spine taG (Swanson et al., 2013); TsG is an even more
restricted variant of Tag in which the adjunction operation is removed altogether.
These results suggest that there is a trade-off to be made in the choice of for-
malism. While on the one hand Mild Context-Sensitivity already aims to limit
formal complexity to precisely what is needed for adequate linguistic descrip-
tion, a practical, statistical implementation presents further opportunities for
constraining complexity.

The idea that non-local relations can be expressed in context-free grammar is
not new. For example, Schmid (2006) uses slash features in non-terminal labels,
which in turn was inspired by generalized phrase structure grammar (Gpsg;
Gazdar et al., 1985). gpsG was a project which aimed to offer both a practical
and formal description of natural language in a context-free framework using
innovations such as generated grammar rules, feature instantiations, and separa-
tion of immediate dominance and linear precedence. However, as the evidence
against the context-freeness of language surfaced, and Grsc was displaced by its
successor Head-Driven Phrase Structure Grammar (1prsG), which as a unification-
based formalism lacks the computational properties to ensure efficient analysis,
the aim of restricting the complexity of grammar formalisms lost appeal, and
the notion that the unbounded possibilities of competence should dictate the
capabilities of the grammar formalism was, tacitly or not, reinstated.

Another performance aspect of language relevant for computational linguis-
tics is pruning. While normally considered an implementation aspect made
necessary by practical computational limitations, finding linguistically and
psychologically plausible shortcuts in language processing forms an interest-
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ing research question. Schuler et al. (2010) present a parser with human-like
memory constraints based on a finite-state model. Although Roark et al. (2012)
are not concerned with cognitive plausibility, they also work with finite-state
methods and show that crc parsing can be done in quadratic or even linear time
with finite-state pruning methods.

As a specific example of a cognitive limitation relevant to parsing algorithms,
consider center embedding. Karlsson (2007) reports from a corpus study that
center embeddings only occur up to depth 3 in written language, and up to
depth 2 in spoken language. If a statistical parser would take such cognitive
limitations into account, many implausible analyses could be ruled out from
the outset. More generally, it is worthwhile to strive for an explicit performance
model that incorporates such cognitive and computational limitations as first
class citizens.

In this work we do not go all the way to a finite-state model, but we do
show that the non-local relations expressed in discontinuous constituents can
be expressed in a context-free grammar model. We start with a mildly context-
sensitive grammar formalism to parse discontinuous constituents, augmented
with tree substitution. We then show that an approximation with context-free
grammar is possible and effective. We find that the reduced independence as-
sumptions and larger contexts taken into account as a result of tree substitution
make it possible to capture non-local relations without going beyond context-
free. Tree substitution thus increases the capabilities of the performance side
without increasing the complexity of the competence side. A performance phe-
nomenon that is modeled by this is that non-local relations are only faithfully
produced as far as observed in the data.
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2 Extracting recurring tree fragments

In which we present an efficient method for finding recurring patterns in treebanks,
which we will use to build grammars and analyze texts.

Einmal ist keinmal.
Once doesn’t count
— German proverb

fragments from treebanks. Using a tree-kernel method the largest

common fragments are extracted from each pair of trees. The algo-
rithm presented achieves a thirty-fold speedup over the previously available
method on the Wall Street Journal data set. It is also more general, in that it
supports trees with discontinuous constituents. The resulting fragments can
be used as a tree-substitution grammar or in classification problems such as
authorship attribution and other stylometry tasks.

Treebanks are a rich source of lexical and structural patterns. A simple
and common approach is to consider the frequencies of individual grammar
productions; the main example being treebank grammars for parsing (Charniak,
1996), but also stylometry (cf. Baayen et al., 1996; Raghavan et al., 2010; Ashok
et al., 2013). Richer patterns involve multiple lexical items or constituents; i.e.,
they may consist of the co-occurrence of a sequence of productions that make
up a specific phrase or a grammatical construction. Kernel methods, which
quantify similarity by decomposing a signal into components, and specifically
tree-kernel methods (Collins and Duffy, 2001, 2002), consider such patterns
but obtain only a numeric value about the degree of similarity of structures,’
without making explicit what the structures have in common. The usefulness of
extracting explicit fragments, however, is underscored by one of the conclusions
of Moschitti et al. (2008, p. 222):

WE PRESENT an algorithm and implementation for extracting recurring

The use of fast tree kernels (Moschitti, 2006a) along with the pro-
posed tree representations makes the learning and classification

In fact, the practice of using a kernel to quantify similarity without making it explicit is referred to
as the ‘kernel trick’ in the machine learning literature.
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much faster, so that the overall running time is comparable with
polynomial kernels. However, when used with [Support Vector Ma-
chines] their running time on very large data sets (e.g., millions
of instances) becomes prohibitive. Exploiting tree kernel-derived
features in a more efficient way (e.g., by selecting the most relevant
fragments and using them in an explicit space) is thus an interesting
line of future research.

Post and Bergsma (2013) report experiments demonstrating this difference in
efficiency between implicit and explicit features. svm-like, adaptive algorithms
now exist (Crammer et al., 2006; Shalev-Shwartz et al., 2011), which may over-
come the efficiency challenge. but that still leaves that fact that the enormous
feature space may be inherently unwieldy, and being able to reason about an
explicit list of features remains useful.

Aside from their use as features in machine learning tasks, tree fragments
also have applications in computational linguistics for statistical parsing and
corpus linguistics.

Since we will focus on the problem of finding the largest common fragments
in tree pairs, there is an intuitive relation to the problem of finding all longest
common subsequences of a string pair. However, in the case of tree structures
the problem is more constrained than with sequences, since any matching nodes
must be connected through phrase-structure.

An algorithm for extracting recurring phrase-structure fragments was first
presented by Sangati et al. (2010). Their algorithm is based on a Quadratic Tree
Kernel that compares each node in the input to all others, giving a quadratic
time complexity with respect to the number of nodes in the treebank. Moschitti
(2006b) presents the Fast Tree Kernel, which operates in linear average time.
However, his algorithm only returns a list of matching nodes. This chapter
presents an algorithm that exploits the Fast Tree Kernel of Moschitti (2006b) to
extract recurring fragments, providing a significant speedup over the quadratic
approach.

APPLICATIONS, RELATED WORK

The two main applications of tree fragment extraction so far are in parsing and
classification problems.

Tree fragments can be used as grammar productions in Tree-Substitution
Grammars (tsG). TsGs are used in the Data-Oriented Parsing framework;
poP (Scha, 1990; Bod, 1992). In Data-Oriented Parsing the treebank is consid-
ered as the grammar, from which all possible fragments can in principle be
used to derive new sentences through tree-substitution. Grammar induction is
therefore conceptually straightforward (although the grammar is very large),
as there is no training or learning involved. This maximizes re-use of previous
experience.
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Since representing all possible fragments of a treebank is not feasible (their
number is exponential in the number of nodes), one can resort to using a
subset, but sampling or arbitrary restrictions are likely to lead to a suboptimal
set of fragments, since the vast majority of fragments occur only once in the
treebank (Sangati et al., 2010). Double-por (2pop; Sangati and Zuidema, 2011)
avoids this by restricting the set to fragments that occur at least twice. The
heuristic of this model is to construct the grammar by extracting the largest
common fragments for every pair of trees, just as the tool presented in this
chapter. This model has been generalized to handle trees with discontinuous
constituents (cf. Chapter 3).

An alternative to the all-fragments assumption of por takes a Bayesian
approach to selecting fragments and assigning probabilities (O’Donnell et al.,
2009; Post and Gildea, 2009; Cohn et al., 2010; Shindo et al., 2012) Such Bayesian
TsGs are induced by sampling fragments using Markov Chain Monte Carlo
(mcMmc) following a Zipfian long tail distribution.

Aside from the generative use of fragments in Tsas, tree fragments are also
used for discriminative re-ranking. Implicit fragment f